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論文摘要 

光子映射是一種有效率的全域照明視覺化方法，而且能夠廣泛地模擬在各種不同 3D

虛擬場景中的視覺或光學效果，尤其有助於合成光線聚焦效果。然而，由於光子映射

採用 nearest-neighbor 密度估計法，所以對於合成結果容易產生包括 proximity、

boundary 及 topological 等類型的偏差。另外對於一些較特別的物體，如鑽石等，由於

光線在物體內部的行進軌跡很複雜，所以使用傳統光子映射法會造成無法忍受且可見

的缺陷。 

在本篇論文中，我們提出結合光子映射法與光束概念的群化光子映射架構，藉以

改善 nearest-neighbor 密度估計的方式。基於光束傳遞時的射線一致性,我們將所有光

子分類成類似於不同光束的光子群，其中每一個光子群中的光子在他們的傳遞路徑上

皆具有一致的相交記錄。之後，我們將每一個光子群儲存在一個獨立光子圖中,並且

依據每一光子群的光子分佈來維護一個多邊形邊界，以去重建一個類似光束形成的照

明區域。而這照明區域形成了一個自然且精確的取樣光子區域，使我們可以在 query 

point 周圍去作光子搜尋時，藉以過濾在附近的鄰近光子。另外，我們分別運用一種

Level of detail 技術及一種直覺策略，去控制光子群重組順序及過程，以企求達到偏差

與雜訊間的平衡。最後，為了取樣效率的考量,我們建構一個由光子群與光子節點所

組成的雙層式 kd-tree 結構，而去輔助在 query point 周圍取樣鄰近光子時，能夠以事

先排除大部份無關光子群的方式，來減少花費在點與多邊形區域相交測試及搜尋鄰近

光子上的時間。 

經由實驗結果可以證明我們所採用的方法能夠成功地減少雜訊及偏差，並且移除

漏光現象，特別是對於寶石物體所產生的複雜聚焦效果，我們能夠順利地合成出高品
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質的影像。 

關鍵詞：光子映射,密度估計,視覺化,全域照明
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Abstract: 

Photon mapping is an efficient global illumination method. It can be generally applied to 

simulate various visual or optical effects in complex scenes, especially caustics. However, 

photon mapping adopts the nearest-neighbor density estimation method, the result tends to 

generate systematic errors including proximity, boundary, and topological bias respectively. 

In addition, for some special objects such as diamonds, the transmission paths of light rays 

inside the object are so complicated that it would result in intolerable visual defects using 

standard photon mapping method. 

In this dissertation, we propose a novel architecture, grouped photon mapping, by 

combing standard photon mapping with the light-beam concept to improve the 

nearest-neighbor density estimation method. Based on the ray coherence of a light-beam, 

we cluster all photons into different beam-like groups of photons, where the photons in the 

same group have a coherent intersection-history in their transmission paths. We store each 

photon group in an isolated photon map which is also used to maintain a polygonal 

boundary to rebuild a beam-like illuminated area by the distribution of the photons. The 

illumination area forms a natural and accurate sampling area to filter the neighbor photons 

around the query point in the nearest-neighbor query stage. In addition, we apply a Level 

of Detail technique and an intuitive strategy for managing the process of reorganizing 

groups to achieve a trade-off between bias and noise. Finally, in terms of efficiency, we 

construct a double-layer kd-tree consisting of group and photon nodes respectively. This 

data structure is useful to first exclude most of unrelated photon groups and reduce the 

time on the point-boundary intersection testing and searching for the nearest-neighbor 

photons. 

The experiment results prove that our method can successfully reduce noise and bias, 
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and eliminate light leakage. Especially, for a gemstone object with complicated caustic 

effects, we can smoothly synthesize a high-quality image. 

Keywords：Photon Mapping, Density Estimation, Visualization, Global Illumination 
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1. Introduction 

1.1. Motivation 

Synthesizing photo-realistic CG images is a quite interesting and challenge task. Since 

1970, it has been being one of most important research issues in the field of computer 

graphics. There are a great number of global illumination techniques developed to handle 

and simulate various optical effects, such as ray tracing based methods [1][2][3][4], 

radiosity based methods [5][6], and hybrid methods [7][8][9]. As a successor, the photon 

mapping (PM) method by Jensen [10] is a popular and important global illumination 

algorithm. It successfully integrates the predecessors to deposit illumination information in 

an independent map from the object geometry. This enables us to simulate various optical 

phenomena well in the scenes with highly complex models.  

However, as a result of photon mapping adopting the nearest-neighbor density 

estimation method, it suffers from the problem of systematic error. As Schregle mentioned 

in his research [11], the sources of error are mainly divided into three types: proximity, 

boundary, and topological bias. 

Proximity bias is inherent to the photon mapping method, which uses a non-zero-sized 

searching area to locate the N closest photons around a query point. (see Figure 1.1) In this 

case, the query point is a point on a surface to evaluate the illumination contribution. This 

bias often leads to blurry and visible defects near the illumination features, such as the 

edge of caustics.  

To compensate for the proximity bias, several filter functions have been applied to the 

nearest-neighbor density estimation method, such as the Cone [12], 2D Epanechnikov [13], 

and Silverman kernel functions [14]. Depending on the distance relationship between the 

photon and the query point, the filter gives more weight to the closer photons to the query 

point. Although this can reduce the bias and get a smoother result in general scenes, the 

result is still insufficient in certain special cases. A good example is shown in Figure 1.2 



 

2 

which is a realistic scene with a crystal gemstone inside. There are a great number of 

caustics with sharp and hard edge accompanying these gemstones. In comparison with 

Figure 1.3, which is rendered by standard photon mapping method, the differences on the 

shape and edge of caustics are very clear and noticeable. 

 

 

Figure 1.1. Proximity bias leads to a worse result for a bigger searching area.  

 

 

Figure 1.2. The realistic photograph of a crystal-like gemstone with complex caustics 
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Figure 1.3. A synthesized image is rendered by standard photon mapping method. 

 

 

Figure 1.4. Boundary bias leads to an overestimated area near the border.  

Both boundary and topological bias originate from evaluating inaccurate area estimates 

by using the nearest-neighbor density estimation method. The former overestimates the 

area as shown in Figure 1.4. This problem results in low energy-density, and therefore 

often generates inaccurate and dark images. Boundary bias happens to the border of an 

object which the query point approaches. Conversely, the latter underestimates the area, as 
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shown in Figure 1.5, and has a high energy-density such that a brighter result is generated. 

Topological bias appears on a non-planar surface in which the query point is situated. 

 

 

Figure 1.5. Topological bias leads to an underestimated area on the non-planar surface.  

 

 

Figure 1.6. Light leakage is generated from the invisible photons behind an obstacle located by the query 

point. 
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Though photon mapping has the advantage of decoupling the photon storage from the 

object geometry, this would also lead to lose the local visibility of photons to the eyes. This 

problem often causes the query point to sample invisible photons and results in light 

leakage. Figure 1.6 illustrates a noticeable situation, where light leaks from an wall’s 

backside due to mis-locate invisible photons.  

Based on the problems from the nearest-neighbor density estimation method, in this 

dissertation, we propose a new solution to reduce bias and eliminate light leakage.  

1.2. Research Goal 

The purpose of this dissertation is to solve bias and light leakage problems from standard 

photon mapping using a simple expandable searching area like a sphere or disk to 

mis-locate false or inappropriate photons. This method is mainly applied to the scene 

which consists of polygonal models. In order to enhance the nearest-neighbor density 

estimation method, we present an advanced method by exploiting a more precise and 

adaptive sampling area to filter neighbor photons around the query point. This method is 

effective to reduce bias and eliminate light leakage. In addition, it can be also applied to 

synthesize high-complexity caustics generated from a gemstone which cannot be correctly 

rendered by standard photon mapping. 

In this dissertation, we present a new approach, grouped photon mapping (GPM), 

which mainly extends the standard photon mapping method by Jensen [10] and 

incorporates the light-beam concept to build a nature and adaptive searchable area for the 

query point. Based on the coherence of intersection history, we cluster discrete photons 

into different groups of photons. This enables us to rebuild a beam-like illumination area 

from each group by constructing a polygonal boundary according to the distribution of 

photons. Finally, in the rendering pass, the illumination area will be as a nature filter to 

restrict the searchable area to sample photons around a query point. By detecting which the 

boundaries of groups are struck by the query point, we can accurately locate the N 
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nearest-neighbor photons from the struck groups and exclude false photons that are 

invisible to the eyes or outside the illumination feature.  

1.3. Dissertation Organization 

The remainder of this dissertation is organized as follows: Chapter 2 reviews the previous 

work on the photon mapping method. Chapter 3 describes the fundamental background 

including photon mapping, level of detail, and diamond optics. In Chapter 4 we details our 

grouped photon mapping algorithm from introducing basic concept and overview to 

explain how to merge noise groups using quadric error metrics, create polygonal boundary 

from each photon group, and perform radiance estimate by advanced nearest-neighbor 

density estimation with double-layer kd-trees. Besides, the experimental results and 

discussion are shown in chapter 5. Finally, we conclude the thesis and some problems 

remains for future work in chapter 6. 
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2. Literature Review 

Many literatures have been proposed to improve standard photon mapping method. They 

were devoted to compensating for the defects of bias. Based on the types of research 

approaches, we divide them into four sections: Bandwidth Decision, Area Estimate, Filter 

function, and Nearest-neighbor Query.  

2.1. Bandwidth Decision 

In an early research by Jensen [15], he adopted a differential checking method to avoid 

blurring the edge of a sharp illumination area such as a caustic. This method dynamically 

determines the available number of nearest-neighbor photons around a query point by 

observing the variation of radiance estimates near the edge based on different number of 

photons. An available estimate will be adopted when the estimate is constantly either 

increasing or decreasing as adding more photons progressively. However, this approach 

tends to generate noise near the edge and is hard to control the process of radiance 

estimate. 

Schregle [11] combined the aspects of Jensen’s and Walter’s approaches to present a 

bias compensating operator for the nearest-neighbor density estimation. The operator 

evaluates the deviations between noise and bias to estimate the irradiance and determine an 

optimal bandwidth (the number of photons). Although the bias compensating operator can 

achieve a better result and trade-off between noise and bias, it is quite time-consuming and 

relies on users to manually specify some adequate bandwidth parameters. In addition, the 

operator is unsuitable to handle the topological bias because of a lack of the geometry 

surfaces photons reside on. 

2.2. Area Estimate 

In the nearest-neighbor density estimation method, some papers were devoted to improve 

the area estimate which computes the area containing all of N nearest-neighbor photons 
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around a query point. The conventional photon mapping method adopted an expandable 

sphere to locate the N nearest-neighbor photons. Therefore, the area estimate is to compute 

the circular projected area by projecting the sphere onto the surface where the photons are 

stored. However, this approach not only tends to locate false photons, but also overestimate 

an area for the query point which is close to corners or the edge of objects. Consequently, 

this overestimation would lead to a boundary bias result. Although later Jensen [16] 

suggested constructing a minimum-area convex hull which encloses the photons to replace 

the circular projected area, this way does not have efficiency and deal with the topological 

bias problem. 

Hey and Purgathofer [17] exploited an axis-aligned cube, which centers around the 

query point, to locate the N nearest-neighbor photons instead of a conventional sphere or 

disc. They estimated the target areas by calculating the internal intersection area between 

the cube and the surface polygons hit by the located photons. This method can deal with 

the problem of overestimating the area and give a smoother radiance estimate near the edge 

or corners of objects. However, it needs taking a great deal of time to perform the 

cube-polygon intersection testing on the radiance estimate.  

Tobler and Maierhofer [18] constructed eight-sized bounding boxes (octoboxes) which 

contains all of N nearest-neighbor photons to decrease the problem of overestimating the 

area. In addition, to eliminate light leakage, they shot 4 or 8 geometry feelers to create a 

bounding box which centers around the query point so as to exclude the false photons 

outside the box. However, this method requires a great amount of time for intersection 

testing between the rays and the neighbor geometry objects. Moreover, for more 

complicated scenes, the method to shoot limited feelers is insufficient to effectively 

eliminate light leakage. 

2.3. Filter Function 

Jensen [12] proposed a cone filter to be used on the radiance estimate. This is helpful to 

reduce the blurry edge of a sharp illumination area such as caustics. The filter assigns a 

weight to each photon which is located or queried by a query point. The weight ωp , as 
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shown in Equation 2.1, is based on the distance (d) relationship between a photon and the 

query point to give the closer photons higher weights.  

ωp = 1 −
d

kr
 

(2.1) 

Where k >=1 is a filter constant and r is the maximum searching distance. ωp is then 

substituted into the filter function K p  as follows: 

K p =  
ωp

πr2  1 −
2

3k
 
 

(2.2) 

Walter [13] and Shirley et al.[14] also utilized Epanechnikov and Silverman kernel 

function as showed in Equation 2.3 and Equation 2.4 respectively. Especially, the latter 

could obtain a better and smoother result than both the former and the cone filter. 

Therefore, in this dissertation we also adopt Silverman kernel function on the radiance 

estimate. 

K p =  
2

πr2
 1 − (

d

r
)2  

(2.3) 

K p =  
3

πr2
 1 − (

d

r
)2 

2

 

(2.4) 

2.4. Nearest-Neighbor Query 

In a paper by Lastra et al. [19], the algorithm showed that the photon map stores more 

photon information, including the first and second intersections of all ray segments, the 
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origins, and the vectors, than the conventional photon map. On the nearest-neighbor 

photon query, a disc-shaped searching area, instead of a sphere area, is used to locate the N 

nearest-neighbor photons around the query point. While any neighbor photon is queried 

and sampled, it must satisfy the following conditions. Either the first or second intersection 

point must reside in the disc area. This way can effectively reduce topological bias. In 

addition, when a disc area is close enough to the corners or walls of a scene, the actual area 

of a reachable region by ray segments is re-evaluated. This estimates a more accurate and 

smaller area to avoid generating boundary bias resulting from overestimate the area. 

Havran et al. [20] further extended the method developed by Lastra et al., and also 

constructed an independent Ray Map to store all of the photon paths. Four different kinds 

of expandable shapes are combined to locate the nearest-neighbor photons around the 

query point, including disc, hemisphere, sphere, axis-aligned bounding box. Also, three 

types of nearest-neighbor queries based on the distance metrics are supported to determine 

which photons are the closest to the query point.  

Both methods of Lastra et al. and Havran et al. need tremendous memory space to 

record the path records of photons and take time to perform the ray-shape intersection 

testing. In addition, in order to prevent boundary and topological bias, they used a larger 

size of sampling area to include more photons near the edge or on curved surfaces of 

objects. However, relatively it could raise proximity bias and generate light leakage 

because of locating false photons which are invisible to the query point. 

Herzog et al. [21] proposed a new architecture using the photon splatting technique. On 

each photon, they adopted a conical frustum area, which is controlled by the kernel width, 

to sample nearby eye-samples which had been first deposited in an earlier stage. Then, 

through the normalized kernel function, the energy contributing to these eye-samples is 

calculated and accumulated in the temporary radiance map. Although this method 

efficiently reduces most of bias and light leakage, we need to tune more parameters 

heuristically for the bandwidth selection and the filter, and consider any exceptional 

conditions. In addition, this method requires enormous memory resources to record the 

radiance map. 
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Recently, both progressive photon mapping [22] and stochastic progress photon 

mapping [23] extend standard photon mapping to propose a multi-pass algorithm. Their 

first passes are ray tracing and distributed ray tracing starting from the camera 

respectively. The following passes are any number of photon tracing passes where each 

pass showers a fixed number of photons from light sources into the scene and re-locates 

the N nearest-neighbor photons around each eye-sample. The radiance estimate will finally 

converge to a more correct result by iteratively performing photon passes to increase the 

number of nearest photons and reduce the searching radius concurrently. A major 

advantage is unnecessary to store all of photons in the photon map. This enables us to use a 

limited amount of memory to compute a global illumination solution with any desired 

accuracy. However, relatively, it needs a large amount of time to estimate accurate radiance. 

Moreover, unless the searching radius is small enough, it could still result in light leakage 

or blurry effect near the edge of an illumination feature because of not entirely excluding 

the false photons outside the illumination area. 
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3. Fundamental Background 

In this chapter, we introduce some related concepts and techniques which this dissertation 

exploited and extended. This chapter is divided into three sections: Photon Mapping, Level 

of Detail, and Diamond Optics. The first section describes the standard photon map 

method by Jensen [16] which is a global illumination technique. The second section gives 

an overview of level of detail and quadric error metrics by Garland and Heckbert [24]. 

Finally, in the third section, we explain the basic geometrical and optical properties of 

diamond which will be simulated and rendered in the experimental scenes. 

3.1. Photon Mapping 

3.1.1. Overview 

Photon mapping, which has been presented by Jensen [15] for over ten years, is a 

well-known two-pass Monte-Carlo ray tracing method. The purpose is to develop an 

independent data structure, the photon map, to deposit the information of indirect 

illumination which is distributed on non-specular surfaces. The map decouples the 

representation of the illumination from the object geometry, and makes the photon 

mapping method possible to handle any geometric and complicated models. In addition, 

due to the usage of the kd-tree [25] [26] [27] and the nearest-neighbor density estimation 

method [28], photon mapping can be more efficient to synthesize high-quality images than 

general Monte-Carlo ray tracing methods. 

The first pass, photon tracing, which is also known as light ray tracing or backward 

path tracing [29], is to record the indirect illumination distributed in the scene from light 

sources. Firstly, a great number of photon particles with carrying the same power (flux) are 

generated from the uniform random sampling on light sources. Then the photons are 

emitted and traced through the scene like conventional ray tracing method. The difference 

is that photons are to propagate flux whereas rays are to gather radiance. When a photon 

hits an object, it can only either to be reflected, refracted or absorbed because of adopting 
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the Russian roulette technique [30] to probabilistically decide the interaction type. In 

addition, the photons which hit non-specular surfaces will be stored in global and caustic 

photon maps. The photon map organizes and maintains proximity within the stored 

photons by adopting an efficient kd-tree data structure. 

In the second or rendering pass, Jensen directly utilized the photon maps to visualize 

the indirect and caustic illumination on diffuse surfaces. A nearest-neighbor density 

estimation method was adopted to estimate radiance by locating the N nearest-neighbor 

photons around the query point. Moreover, in order to reduce the blurry edge of an 

illumination region, the cone filter is used to filter photons so that the nearer photon to the 

query point has a higher weight on the power than the further one. 

3.1.2. Russian Roulette 

Russian roulette was first used in computer graphics by Arvo and Kirt [30]. It is a 

stochastic technique which uses a probabilistic sampling way to determine whether a 

traced photon should be reflected, refracted, or absorbed.  

In implementation, for an example, we assume that there is a reflective surface that is 

hit by a photon. This surface has a diffuse reflection coefficient d, and specular reflection 

coefficient s, moreover, the sum of d and s is below or equal to one. In addition, a 

uniformly distributed random variable ξ, whose value is between zero and one, is used to 

make below decision: 

a. ξ ∈  0, 𝑑  ⟹ diffuse reflection 

b. ξ ∈  𝑑, 𝑑 + 𝑠  ⟹ specular reflection 

c. ξ ∈   𝑑 + 𝑠, 1 ⟹ absorption 

Depending on the random value ξ, when ξ corresponds to case a, this means that the 

photon will be diffusely reflected off the surface. Relatively, if 𝑑 < 𝜉 ≤ 𝑠, the photon 

performs specular reflection. Otherwise, if (𝑑 + 𝑠) < 𝜉 ≤ 1, the photon is absorbed. 
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This method ensures that a photon can be quickly terminated in a finite number of 

bounces. Also, only a fewer photons are necessary to be stored in the photon map. This is 

because each time a photon as path tracing [29] picks a path to bounce rather than spawns 

several sub-photons to do at the intersection point. Consequently, the radiance estimate is 

still a correct and unbiased result. 

3.1.3. Photon Maps 

The photon map is a data structure created to store the photons that hit diffuse surfaces 

rather than specular surfaces. The reason for not storing photons on specualr surfaces is 

that the probability of incoming photons matching with the viewer’s specular direction is 

almost zero. In addition, a photon might be stored several times because of bouncing many 

times on different non-specular surfaces.  

For considering the trade-off between quality and efficiency, there are three types of 

photon maps used to store individual photons based on the difference on the photon path:  

Table 3.1. Three types of photon maps 

Type Path 

Notation 

Description 

Caustic 

photon 

map 

LS
+
D Store the photons which have performed at least one 

specular reflection before hitting a diffuse surface as shown 

in Figure 3.1. 

Global 

photon 

map 

L{S|D|V }∗D Store all of the photons from direct, shadow, indirect and 

caustic illumination before hitting a diffuse surface, as 

showed in Figure 3.2 and Figure 3.3. 

Volume 

photon 

map 

L{S|D|V }
+
V Store the photons from the indirect illumination of a 

participating medium before a volume scattering. 
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The above path notation is expressed by the grammar of Heckbert [39]. L means an 

emission from light sources. S is a specular reflection or transmission, while D represents a 

non-specular reflection or transmission. V is a volume scattering. The symbol | equals to 

the logical operator “or”. + means that either of S, D or V repeats at least one time. * 

means that either of S, D or V does not appear or repeats at least one time. 

 

 

Figure 3.1. Caustic photons which first bounce on any specular surface at least once before being stored on a 

diffuse surface. 

 

 

Figure 3.2. Direct photons are stored on the surface which photons first hit, while shadow photons are stored 

on the next object surface which faces light sources. In which case, the next object is the second object hit by 
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a photon along the direct photon’s direction. 

 

 

Figure 3.3. An indirect photon which first hits any non-specular surface at least once before being stored on 

a diffuse surface. 

3.1.4. Photon Structure 

The required data for storing a photon includes the position, incoming power, incident 

direction, and flag as shown below [16]: 

                Struct photon { 

                  float x, y, z;           // intersection position  
                  char p[4];            // incoming power packed as 4 chars 

                  char phi, theta;  // compressed incident direction 

                  short flag;           // flag used in kd-tree 

                } 

Where the power data is represented by Ward’s RGB-format [31] with 4 bytes which uses 

an extra 8-bit exponent. The incident direction is denoted by a pair angles, ϕ  and θ, of 

the spherical coordinates and compressed to 65,536 possible directions by the following 

computation: 

                                                     ϕ    = 255 ∗
atan ∗ dy ,dx +PI

2∗PI
                  

(3.1) 
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                                              θ = 255 ∗
acos dx 

PI
                                                       

(3.2) 

3.1.5. The Balanced Kd-Tree  

The kd-tree is a data structure for organizing and managing the points in a k-dimensional 

space. The data structure is to construct a binary tree consisting of the points by recursively 

partitioning a space into two sub-spaces. In other words, it is a special case of binary space 

partition tree (BSP-tree) [32]. The purpose of the kd-tree is to accelerate the process of 

accessing spatial datum. Each tree node represents a point or data item. Moreover, every 

non-leaf node also plays the role of the position of a splitting plane or hyperplane which 

divides the space into two subspaces. Depending on different ways to construct the kd-tree, 

its structure may become balanced or very skewed. As a result, the average 

time-complexity for searching a point in the kd-tree is Ο log2 N  and O(N) respectively. 

So, for efficiency, it is quite natural to construct a balanced kd-tree for querying the 

N-nearest neighbor photons. 

 

 

Figure 3.4. Construct a two dimensional kd-tree: (a) Sort the points, choose the median point to be as the 

root, and partition the x-axis. (b) Recursively sort left and right subspaces, choose the new left and right 

sub-nodes, and partition the subspaces. (c) Process the remainder points until all points have been put in the 

tree.  
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Figure 3.4 illustrates the stages of constructing a balanced kd-tree. Firstly, we have 

given N photons in the space and then sort them in the x-axis value order. Later, we choose 

the median point from the sorted list to be as the root node of the tree. Also, we split the 

x-axis into left and right subspaces along the position of the median point. After that, we 

recursively continue in each half space to sort the remainder points, allocate the new 

sub-node, and split the subspace, until all points have been processed and put in the tree. 

3.1.6. Radiance Estimate 

Before visualizing global illumination using the photon maps, we need to first understand 

how to compute the reflected radiance (𝐿𝑜) at a given intersection point x on the surface. 

This can be done by evaluating the following light transport equation (derive from the 

rendering equation) [29]: 

                           𝐿𝑜 x, 𝜔𝑜 = 𝐿𝑒 x, 𝜔𝑜 + 𝐿𝑟 x, 𝜔𝑜  

                                       = 𝐿𝑒 x, 𝜔𝑜 +  𝑓𝑟 x, 𝜔𝑖 ,𝜔𝑜 Ω
𝐿𝑖(x, 𝜔𝑖) cos 𝜃𝑖 𝑑𝜔𝑖 ,         

(3.3) 

Where 𝐿𝑒  and 𝐿𝑖  are the emitted radiance in direction 𝜔𝑜  and the incident radiance in 

direction 𝜔𝑖  at x respectively. Ω  represents the hemisphere or sphere covering all 

incoming directions at x. 𝑓𝑟  is the bidirectional reflectance distribution function (BRDF) 

[33], while cos 𝜃𝑖  is the inner product between 𝐿𝑖  and Nx that is the normal direction at 

x. This integral term 𝐿𝑟 x, 𝜔𝑜  cannot be directly used to estimate radiance through the 

way of gathering the power of photons stored in the photon maps. Therefore, we must 

rewrite this integral to make it possible to deal with the flux (Φ). Firstly, 𝐿𝑖(x, 𝜔𝑖) can be 

converted into the formula below: 

𝐿𝑖(x, 𝜔𝑖) = 
𝑑Φ𝑖 x, 𝜔𝑖 

𝑑𝜔𝑖𝑑𝐴𝑖
⊥ =

𝑑Φ𝑖 x, 𝜔𝑖 

𝑑𝜔𝑖𝑑𝐴𝑖 cos 𝜃𝑖
 

(3.4) 
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Where 𝑑Φ𝑖  is the incoming flux at x, and 𝑑𝐴𝑖
⊥ is the vertical differential area that is 

struck by incident direction 𝜔𝑖 . We then substitute 𝐿𝑖(x, 𝜔𝑖) of Equation 3.3 with Equation 

3.4 and rewrite it as the following equation: 

                         𝐿𝑜 x, 𝜔𝑜 =  𝐿𝑒 x, 𝜔𝑜 +  𝑓𝑟 x, 𝜔𝑖 ,𝜔𝑜 Ω
𝐿𝑖(x, 𝜔𝑖) cos 𝜃𝑖 𝑑𝜔𝑖   

                                            =  𝐿𝑒 x, 𝜔𝑜 +  𝑓𝑟 x, 𝜔𝑖 ,𝜔𝑜 Ω

𝑑Φ𝑖 x,𝜔𝑖 

𝑑𝜔 𝑖𝑑𝐴𝑖 cos 𝜃𝑖
 cos 𝜃𝑖 𝑑𝜔𝑖   

                                            =  𝐿𝑒 x, 𝜔𝑜 +  𝑓𝑟 x, 𝜔𝑖 ,𝜔𝑜 Ω

𝑑Φ𝑖 x,𝜔𝑖 

𝑑𝐴𝑖
.                

(3.5) 

Jensen adopted the nearest-neighbor density estimation method [28] to approximate 

incoming flux Φ𝑖 . This method is to locate N photons from the photon maps which are 

closest to query point x, and accumulate the total flux of the N photons. Based on the 

assumption that all of the N photons and the surface intersect at x, hence Equation 3.5 can 

be rewrite again as follows: 

                                   𝐿𝑜 x, 𝜔𝑜 =  𝐿𝑒 x, 𝜔𝑜 +  𝑓𝑟 x, 𝜔𝑖 ,𝜔𝑜 Ω

𝑑Φ𝑖 x,𝜔𝑖 

𝑑𝐴𝑖
  

                                                      ≈ 𝐿𝑒 x, 𝜔𝑜 +  𝑓𝑟 x, 𝜔𝑝 ,𝜔𝑜 
ΔΦ𝑝  x,𝜔𝑝  

ΔA
N
𝑝=1   

                                                             ≈ 𝐿𝑒 x, 𝜔𝑜 +
1

πr2
 𝑓𝑟 x, 𝜔𝑝 ,𝜔𝑜 ΔΦ𝑝 x, 𝜔𝑝 

N

𝑝=1

 

(3.6) 

Where ΔΦ𝑝  represents each photon’s power and ΔA is the volume of a sphere around x, 

that is expended to contain N-nearest neighbor photons such as shown in Figure 3.5. 

However, the N photons are assumed to reside in the same flat surface with x. Therefore, 

we can be more correct to estimate ΔA by computing the circle surface area from the 

sphere-surface intersection. That is, ΔA equals to πr2 where r is the distance between x 

and the furthest photon. 
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Figure 3.5. The reflected radiance Lr is estimated by using an expandable sphere to locate the 

nearest-neighbor photons around x and computing the disk area ΔΑ from the sphere-surface intersection.  

3.1.7. Rendering 

In the rendering pass, photon mapping exploits distributed ray tracing [35] to render the 

final image. Each pixel’s radiance on the image is computed by shooting multiple rays 

from the viewer through the pixel into the scene, and averaging the radiance results 

returned by the rays. The radiance estimate is executed on the surface hit by a ray. It is then 

computed using the rendering equation (as showed in Equation 3.6) to locate the N 

nearest- neighbor photons from the photon maps around the query point. 

Based on the both considerations of efficiency and quality on the radiance estimate, the 

rendering equation (Equation 3.3) is decomposed into four individual terms: direct 

illumination (𝐿𝑖 ,𝑙), specular reflection, caustics (𝐿𝑖,𝑐), and soft indirect illumination (𝐿𝑖 ,𝑑). 

The terms can be flexibly evaluated by utilizing different methods to visualize direct and 

indirect illumination as described in the next two paragraphs. The four equation terms (𝐿𝑒  
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is omitted for convenience) are showed below: 

                   𝐿𝑟 x, 𝜔𝑜 =  𝑓𝑟 x, 𝜔𝑖 ,𝜔𝑜 Ω
𝐿𝑖(x, 𝜔𝑖) cos 𝜃𝑖 𝑑𝜔𝑖  

=  𝑓𝑟 x, 𝜔𝑖 ,𝜔𝑜 Ω
𝐿𝑖,𝑙(x, 𝜔𝑖) cos 𝜃𝑖 𝑑𝜔𝑖 +                                            

                                           𝑓𝑟 ,𝑠 x, 𝜔𝑖 ,𝜔𝑜 Ω
 𝐿𝑖 ,𝑐(x, 𝜔𝑖)+𝐿𝑖,𝑑(x, 𝜔𝑖)  cos 𝜃𝑖 𝑑𝜔𝑖+         

                                          𝑓𝑟,𝑑 x, 𝜔𝑖 ,𝜔𝑜 Ω
𝐿𝑖 ,𝑐(x, 𝜔𝑖) cos 𝜃𝑖 𝑑𝜔𝑖+

                                                 𝑓𝑟 ,𝑑 x, 𝜔𝑖 ,𝜔𝑜 Ω
𝐿𝑖,𝑑(x, 𝜔𝑖) cos 𝜃𝑖 𝑑𝜔𝑖                 

(3.7) 

Where,  

𝑓𝑟 x, 𝜔𝑖 ,𝜔𝑜 =  𝑓𝑟 ,𝑠 x, 𝜔𝑖 ,𝜔𝑜 + 𝑓𝑟 ,𝑑 x, 𝜔𝑖 ,𝜔𝑜 , and 

                𝐿𝑖(x, 𝜔𝑖) = 𝐿𝑖,𝑙(x, 𝜔𝑖)+𝐿𝑖,𝑐(x, 𝜔𝑖)+𝐿𝑖,𝑑(x, 𝜔𝑖) 

𝐿𝑖,𝑙  represents the direct illumination contribution from light sources, 𝐿𝑖,𝑐  is caustic 

illumination while light sources has first performed specular reflection or transmission at 

least once, and 𝐿𝑖,𝑑  is indirect soft illumination while light sources has been diffusely 

reflected at least once. The BRDF 𝑓𝑟  is also divided into two components: 𝑓𝑟 ,𝑠 and 𝑓𝑟,𝑑 . 

𝑓𝑟 ,𝑠 represents the specular component that is applied to highly glossy or perfect specular 

surface, while 𝑓𝑟,𝑑  is the diffuse component that deals with perfect diffuse through 

slightly glossy surface. 

3.1.8. Direct Illumination 

There are three different ways to speed up computing direct illumination. The first method 

is a fast and approximate solution by locating direct and shadow photons (carry negative 

power) from the global photon map and directly substituting them into Equation 3.6 to 

estimate radiance.  
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The second method is similar to the above-mentioned way but evaluating the query 

point’s visibility to light sources as shown in Equation 3.11. Then the radiance estimate can 

be obtained through directly multiplying 𝑉𝑙 by the irradiance of light sources l. 

𝑉𝑙 =  
𝑛𝑙,𝑑

𝑛𝑙,𝑑+𝑛𝑙,𝑠
, 

(3.8) 

Where 𝑛𝑙 ,𝑑  and 𝑛𝑙 ,𝑠 are the number of direct and shadow photons respectively. 𝑉𝑙 is the 

visibility rate to the light sources l.  

In comparison to the first two ways, the final method is a more accurate estimate by 

combining 𝑉𝑙 with shadow rays to detect the visibility to light sources. If 𝑉𝑙 equals to 

zero or one, we can directly evaluate the result without wasting time to trace shadow rays. 

Otherwise, when direct and shadow photons coexist in the nearest-neighbor photons, this 

means that the query point might be within a penumbra region. At this moment, some 

shadow sample rays will be spawned at the query point and traced through the scene to test 

whether there is any obstacle occluding light sources l. 

3.1.9. Specular Reflection  

The second term of Equation 3.7 is to estimate the reflected radiance on highly glossy or 

specular surface. Because the outgoing directions on the specualr surface are almost 

reflected along the mirror direction, we barely observer any ray at the other directions. (see 

Figure 3.6) This means that all or most of the photons located from the photon map may 

not contribute to the radiance estimate. As a result, it leads to an incorrect result. So, the 

integral term is using standard Monte Carlo ray tracing method to spawn a few sample 

rays according to the importance sampling on BRDF 𝑓𝑟 ,𝑠 x,𝜔𝑖 ,𝜔𝑜 . These rays are 

recursively traced through the surfaces until they are terminated or reflected off a 

non-specualr surface and then return the estimates. 
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Figure 3.6. Specular reflection. It is not feasible to search photons on specualr surfaces which are stored in 

the photon map. 

3.1.10. Caustic Illumination 

Caustics are generated on diffuse or slightly glossy surfaces. They are evaluated by the 

third integral term of Equation 3.7. Photon mapping stores all of caustic photons in the 

both global and caustic photon maps. We can choose either one of them to directly 

visualize caustic illumination. The estimate difference appears on the types of the nearest 

photons located by the query point. That is to say, using the global map makes the 

N-closest photons possible to consist of direct, indirect, or caustic photons, but the photons 

only consist of caustic photons while using caustic map. Therefore, the latter gives a more 

accurate solution than the former because of locating more caustic photons. In addition, 

since caustic illumination is high variance, the photon map needs storing a large number of 

caustic photons to obtain a better image quality. 
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Figure 3.7. The final gathering technique is to trace a number of rays decided by importance sampling based 

on the BRDF distribution and the incoming flux at query point x to find the gather point x′, and estimate 

𝐿𝑟(x,ωo) by gathering the reflected radiance 𝐿𝑟 x′,ω′  from all of the sample rays. 

3.1.11. Soft Indirect Illumination 

The last term of Equation 3.7 is applied to visualize soft indirect illumination on diffuse 

surfaces. It is computed by evaluating the incoming radiance which has been reflected off 

any diffuse surface at least once. We can know that the contribution to the reflected 

radiance  𝐿𝑟  is so small that the image result looks smooth and soft. This effect is often 

called color bleeding. 

There are mainly two methods to visualize soft indirect illumination. A fast 

approximate solution is directly using the global photon map to estimate radiance. If we 

need an accurate evaluation to obtain high quality, this can be achieved by the final 
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gathering technique [35]. It adopted the Monte Carlo ray tracing method which uses an 

optimal importance sampling scheme based on both the BRDF and the incoming flux from 

the global photon map. That means that the optimal probability distribution function 

𝑝(x, 𝜔𝑖) at query point x is decided by the following equation: 

𝑝 x, 𝜔𝑖  ∝ 𝑓𝑟 x, 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 x, 𝜔𝑖 𝑐𝑜𝑠 𝜃𝑖  

=  𝑓𝑟 x, 𝜔𝑖 , 𝜔𝑜 
𝑑2Φ x,𝜔 𝑖 

𝑑𝐴𝑑𝜔 𝑖
                      (3.9) 

 

In order to estimate the reflected radiance 𝐿𝑟(x, ωo) at query point x, as showed in 

Figure 3.7 above, we first use optimal importance sampling to spawn a limited number of 

sample rays and directions at x. Each ray is then traced through the scene to find next 

intersection point x′ i.e. a gathering location. Finally, all of the rays return their reflected 

radiance  𝐿𝑟(x′,ω′), which is computed at the gathering point by directly using the global 

photon map, to estimate the radiance 𝐿𝑟(x, ωo). 

3.2. Level of Detail 

3.2.1. Introduction 

In computer graphics, level of detail (LOD) [36] is a technique that manages the 

complexity of 3D model representation by some metrics such as the object distance from 

the viewer, the geometry importance, or the view dependence. Figure 3.8 illustrates a 

bunny example based on the object distance from the viewer. When the bunny’s distance is 

farer and farer, it is sufficient to represent the 3D object with less and less detailed 

representations. This technique increases the efficiency of rendering the scene and 

maintains a quality image concurrently. 

Basically, there are three major categories for managing level of detail: discrete, 

continuous, and view-dependent LOD [37].  
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Figure 3.8. The bunnies are represented by different versions of level of detail based on the distance from the 

viewer. 

Discrete LOD is a traditional approach originating from Clark [36] in 1976. At the 

preprocess stage, this method has first generated a finite number of level-of-detail versions 

for an object model. Then, at the run-time stage, the renderer just needs to decide a suitable 

detailed object version to be rendered in the scene. Because discrete LOD does not 

consider which the parts of an object the viewer can see to adaptively simplify the local 

geometric detail, it is also called view-independent LOD. A major advantage is that the 

simplification stage is isolated from the rendering stage so that the programming 

complexity becomes relative low. Therefore, the simplification stage has a large flexibility 
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to create any number of level-of-detail models, while the render is simply responsible to 

choice which one detailed model to be rendered. However, in contrast, it needs to allocate a 

large number of resources for storing different versions of models. In addition, the render 

is forced to pick either an insufficient or excessive detailed model in an intermediate level, 

when we cannot find any appropriate detailed model to be rendered. In which case, the 

lower detailed version would affect the image quality while the higher detailed version 

needs more rendering time. 

 Compared to discrete LOD generating individual detailed objects in the preprocess 

stage, continuous LOD enables the renderer to dynamically render an appropriate detailed 

version at run time. This method first extracts the simplification information by creating a 

data structure to evaluate the error metric at the simplification stage. At run time, the 

renderer then dynamically determines an optimal version using the error metric according 

to the desirable simplification demand. This technique has a better granularity so that we 

may make use of the resources to generate a high quality image. 

View-dependent LOD is an extension of continuous LOD. Depending on 

view-dependent simplification metric, the system dynamically determines an optimal 

level-of-detail version for different viewpoints. A great advantage is that the different parts 

of an object model can support multiple levels of simplification. For example, a visible 

area near the viewer would show a higher detail than the other parts. This approach brings 

an even better granularity than the above-mentioned methods, especially for some large 

objects such as terrains.  

3.2.2. Polygonal Simplification using Quadric Error Metrics 

Garland and Heckbert [24] proposed a surface simplification algorithm using quadric error 

metrics (QEM) which is a continuous LOD. The aim is achieving a trade-off between 

efficiency and quality by combining speedy simplification, and approximation fidelity, 

with approach generality. Based on iterative contraction of vertex-pairs, the algorithm 

performs a series of mesh simplification operations by maintaining a geometric error 

approximation using quadric matrices.  
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Initially, the algorithm selects all of candidate vertex-pairs, regardless of whether a pair 

shares an edge or not, and computes the quadric error for each pair to be as the contraction 

cost. The candidate vertex-pairs are then placed in a heap queue to sort according to the 

contraction-cost order. In each time of contraction, we merge a vertex-pair with the 

minimum cost and re-evaluate the quadric errors for the associated pairs which connect 

with the removed vertex-pair. Finally, the simplification step is iteratively performed, until 

the desired number of polygons or approximation has been reached. 

 

 

Figure 3.9. The process for contracting a vertex-pair. A candidate vertex-pair  vi , vj  is selected, and 

collapsed into a new target vertex v . Both grey regions related to  vi , vj  are then degenerated and removed. 

 

 

Figure 3.10. An unconnected vertex-pair  vi , vj  is selected as a candidate, where vi  and vj come from 

two separate regions. The pair is contracted into a new vertex v  such that both regions are merged into a 

non-manifold surface.  
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3.2.3. Candidate Vertex Pairs 

QEM algorithm adopted a vertex-pair collapse operator to make it possible to topologically 

simplify manifold and non-manifold surfaces. This can be done by supporting two 

contraction types including connected and unconnected vertex-pairs as showed in Figure 

3.9 and Figure 3.10 respectively. As mentioned above, a candidate vertex-pair (vi , vj) 

must correspond to either of the following conditions: 

a. (vi , vj) has an edge 

b.  vi , vj  has not an edge, and  vi−vj < 𝑑,  

Where the distance d is a threshold parameter specified by the user. When d equals to zero, 

the vertex-pair contraction will become a general edge-collapse operation. In contrast, 

higher threshold will result in a large number of unconnected vertex-pairs to be selected 

such that some undesirable results are generated. In fact, a smaller threshold is enough to 

be used in most cases. 

3.2.4. Quadric Error Metrics 

Based on the fidelity metric for managing the mesh-simplification process, LOD 

algorithms are generally divided into two types: fidelity-based simplification and 

budget-based simplification [37].  

Fidelity-based simplification is controlled by assessing a simplification error ϵ, which 

represents the difference between the simplified mesh and the original mesh. This method 

can often bring an accurate approximation. There are some common error metrics for 

evaluating simplification error, including geometry error, attribute error, combining error, 

incremental error, and so on.  

Budget-based simplification is managed by achieving the desirable number of polygon 

or vertex simplification which is specified by the user. Relatively, this method can increase 

the efficiency of the rendering pass. 
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Basically, quadric error metrics is geometry error metrics, but can be extended to 

become one kind of combing error metrics by incorporating some vertex attributes such as 

colors, textures, and surface normals [38]. In this dissertation, we only use a basic QEM 

algorithm, and therefore we do not describe the extension method for convenience. 

In order to characterize the geometry error, QEM algorithm defined an error at a given 

vertex v to be the sum of squared distances from vertex v to all the associated planes. In 

which case, the planes are the triangles which intersect at vertex v. This error (∆v) at vertex 

v is represented as follows: 

∆v =  ∆   Vx , Vy , Vz , 1 
T
 =  (pTv)2

p∈planes (v)

                                 

(3.10) 

Where the 3D coordinates of vertex v is denoted as a transpose matrix. p equals to 

 a b c d T  where a, b, and c are the coefficient term, and d is the constant term of the plane 

equation ax + by + cz + d = 0 . Also, the equation has been normalized such that 

a2 + b2 + c2 = 1. Furthermore, the error metric can be rewritten as the quadratic form 

below:  

∆v =   vTp  pTv 

p∈planes  v 

 

   =  vT ppT v
p∈planes  v 

 

                        = vT    Kp

p∈planes  v 

  v = vTQv 

(3.11) 

Where we substitute coefficients a, b, c, and constant d into p and obtain the fundamental 

error quadric matrix Kp  as below: 



 

31 

Kp = ppT  =  

a
b
c
d

  a b c d =  

a2 ab ac ad
ab b2 bc bd
ac
ad

bc
bd

c2 cd
cd d2

  

(3.12) 

As showed in Equation (3.11), we know that the error at any vertex in space can be 

efficiently computed by first summing all of error quadric matrices to become a single 

matrix Q. A more important meaning is that while contracting a vertex-pair  vi , vj  into a 

new position v , the quadric matrix Q  for vertex v  can be computed by solving the 

problem of the union set (planes vi  ∪  planes vj ). If planes vi  and planes vj  are 

disjoint, we can directly add Qi  and Qj  together to obtain Q . Otherwise, if they are overlap, 

this algorithm suggested that we can sacrifice some quality to efficiently adopt the addition 

operation (Qi + Qj), or additional storage to solve inclusion-exclusion formula on demand. 

The only remaining problem is how to determine a position for vertex v  with minimum 

error ∆v . QEM offers a simple solution which picks a position from either of vi ,vj , or 

(vi + vj) 2  to compute ∆v . The position with the smallest error value will be chosen as 

the new vertex v .  

Another method is to attempt to find a minimum value from the partial differential 

equation, i.e.  
∂∆v 

∂x
=

∂∆v 

∂y
=

∂∆v 

∂z
= 0, by expanding ∆v  to become a quadric polynomial 

equation as showed in Equation (3.13): 

 ∆v = v TQv  

    = [x y z 1]  

q11 q12 q13 q14

q12 q22 q23 q24

q13

q14

q23

q24

q33 q34

q34 q44

  

x
y
z
1
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                 = q11x2 + q22y2 + q33z2 + 2q12xy + 2q13xz + 2q14x + 2q23yz + 2q24y

+ 2q34z + q44 

(3.13) 

Where we assume that v = [x y z 1]T  and qkl  denotes the element in row k and column l. 

In addition, this partial differential equation can be further represented as a matrix form to 

find the solution:  

 

q11 q12 q13 q14

q12 q22 q23 q24

q13

0
q23

0

q33 q34

0 1

 v =  

0
0
0
1

  

(3.14) 

If this matrix is invertible, we can get the following solution: 

v =  

q11 q12 q13 q14

q12 q22 q23 q24

q13

0
q23

0

q33 q34

0 1

 

−1

 

0
0
0
1

  

(3.15) 

Otherwise, if it is not invertible, the only way is to extend the first method to find an 

approximate position with a relative smaller ∆v  from the interval between vi , and vj . 

3.3. Diamond Optics 

Diamond’s preciousness not only denotes its rareness, but also its fascinating appearance. 

That is to say, diamond may exhibit more brilliant and colorful visual effects than the other 

objects. This is because it has a perfect cut and polished appearance such as Figure 3.11, 

and shows complicated optical properties such as high reflectance, high refractive index, 

noticeable dispersion, intense caustics, and polarization. Polarization will be not discussed 
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and implemented for efficiency. 

 

 

Figure 3.11. The cutting rate of a round brilliant cut. 

 

 

Figure 3.12. Total reflection happens at the angle which is equivalent to or bigger than the critical angle 

where θi  and θt  are the incident angle and refractive angle respectively. 
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3.3.1. Total Reflection  

When light strikes the inner surfaces of a well-polished diamond, in a general case some of 

light is reflected off the surfaces and the remaining light is transmitted into the outside of 

the object. However, if light strikes at the angle which is equivalent to or bigger than the 

critical angle (about 24.5 degrees), 100% energy of light would be totally reflected as 

showed in Figure 3.12. 

 

 

Figure 3.13. Reflective intensity v.s. Incident angle.  

 

We can observe that when incident light strikes the outer surfaces of diamond, the 

critical angle is the maximum refractive angle generated from whatever incident light 

enters at which angle. In addition, from Snell’s Law ( ttii nn  sinsin  ), we can also 

know that the higher a medium’s refractive index has, the smaller critical angle it generates. 

Because diamond has a very high refractive index, its critical angle becomes so small that 

light tends to be totally reflected. This is also the reason why a large amount of light can be 
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transmitted through diamond into air. The above-mentioned trend can be illustrated as 

Figure 3.13. With the aid of Fresnel formula, this graph records how much of energy is 

reflected or refracted at different incident angles from air into diamond or diamond into air. 

3.3.2. Dispersion and Fire 

Conceptually, fire is not the same as dispersion. It can be observed from an appearance 

aspect, where we can see colored flashes. In contrast, dispersion is inherent to transparent 

materials. It originates from the fact that white light is broken into various monochromatic 

lights. In brief, fire is the resultant production after white light being dispersed into colored 

lights.  

Several factors would affect either effect of dispersion or fire. First, both angle and 

position of incident or outgoing light would strongly impact the effect the viewer can see. 

Second, the longer distance a light beam propagates inside the diamond, the wider it 

spreads out. Finally, it is also affected by light spreading out across at least two adjacent 

facets, where a dispersed light-beam will split apart and propagate in different directions. 

(See Figure 3.14) 

 

 

Figure 3.14. A dispersed light-beam splits apart and spreads out in different directions.  
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3.3.3. Geometry Cutting 

Cutting a model into different geometric shapes, such as shown in Figure 3.15 and Figure 

3.16, also influences the behavior of light propagating inside the diamond. For example, 

the brilliant-cut such as Figure 3.11 is designed to have most of the incident light be 

transmitted into air after performing multiple times of total reflections inside the diamond. 

In addition, diamond is made up of well-polished facets which are extremely similar to 

specular surfaces. It, therefore, has very high reflectance and noticeable caustic effects.  

 

 

Figure 3.15. Emerald-cut and marquise-cut. 

 

 

Figure 3.16. Oval-cut and pear-cut.  
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4. Grouped Photon Mapping 

In this chapter, we detail the grouped photon mapping method. This chapter is organized 

into 4 sections. At the beginning, we explain the basic concept our algorithm adopts in 

Section 4.1, and give an overview of our algorithm in Section 4.2. In Section 4.3, a LOD 

technique, QEM, is used to manage the process of merging noise groups and obtain a 

balance between noise and bias. In Section 4.4, we maintain a polygonal boundary for each 

photon group to rebuild a beam-like illumination area. In Section 4.5, an advanced 

nearest-neighbor density estimation method with a double-layer kd-tree is proposed. 

Finally, we explain how to visualize global illumination by the GPM method in Section 

4.6. 

 

 

Figure 4.1. A reflected or refracted light-beam strikes the table and forms a visible illumination area. 
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4.1. Basic Concept 

A light-beam can be represented as a bundle of individual rays that have the same ray 

coherence in their transmission paths where each one of the intersection, path, or direction 

corresponds to the coherence. In addition, when a light-beam is projected onto a surface, a 

clear and visible illumination area will be formed on this surface as shown in Figure 4.1 

above. The illumination-area information is very useful to give an accurate reference while 

gathering any illumination contribution at a given point to render global illumination. 

Based on the above light-beam concept, in this dissertation we combine the light-beam 

idea with the photon mapping method to rebuild different beam-like illumination areas 

using a large number of discrete photon-particles. In order to achieve the above-mentioned 

goal, we first record an intersection history for each traced photon in the photon-tracing 

pass as one kind of ray coherence. The intersection history is a collection of all the mesh 

indexes hit by a photon. According to the intersection-history coherence, we then cluster 

the photons together that have the same coherence to represent a unique light-beam. 

Furthermore, the illumination area can be rebuilt by the distribution of photons. Therefore, 

in the rendering pass, we can use the illumination areas to serve as a filter for managing the 

searchable area of a query point. It replaces an inaccurate searching area using the sphere 

or disc by standard photon mapping. 

4.2. Overview 

Grouped photon mapping is made up of the photon-tracing and rendering passes, as 

illustrated in Figure 4.2. Basically, our algorithm’s most of stages follow the procedures of 

Jensen’s method [10]. The first pass, photon pass, is path tracing which traces, clusters, 

and stores photons on diffuse surfaces by maintaining multiple independent grouped 

photon maps to store different ray-coherence groups of photons. Then we reconstruct the 

beam-like illumination areas by means of constructing polygonal boundaries. In the second 

pass or rendering pass, we adopt distributed ray tracing to render the final image result. 

We gather the energy of the photons sampled from the grouped photon maps to estimate 

the radiance for visualizing global illumination. 
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Figure 4.2. The system architecture for grouped photon mapping. It is separated into two main stages, 

including the photon and rendering passes. The photon pass performs seven procedures (blue-color blocks) to 

create multiple grouped photon maps, while the rendering pass takes four steps (pink-color blocks) to 

estimate the radiance for the final result. 

4.2.1. Photon Pass 

In this pass, initially, all photons are spawned from performing Monte Caro uniform on 
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light sources as shown in Figure 4.3. The photons are then showered into the scene to 

perform a series of optical reactions with surfaces. 

 

 

Figure 4.3. A photon is generated by performing uniform random sampling on the area light sources. 

While a photon is being traced, we use a temporary array to record the intersection 

history as shown in Figure 4.4. This array stores all of the indexes of polygonal meshes hit 

by each ray-segment of a photon in the transmission path. In addition, in order to 

distinguish these photons which actually are spawned from different light sources, we also 

store the light source index in the head of the array. 

Once all photons have terminated their transmissions, we then cluster them into 

different beam-like groups according to the intersection-history coherence. That is to say, 

when there are at least two photons sharing a total identical history, they are clustered 

together in a common group. These photons can compose a beam of light. (see Figure 4.5) 
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Figure 4.4. An intersection history is to record the light source index and all the indexes of meshes hit by a 

photon. 

 

Figure 4.5. Three discrete photons (represented by green color rays) are clustered together in the same group 

based on the intersection-history coherence to rebuild a beam of light. 

After finishing creating photon groups, we start to perform a photon-count testing for 

each group to detect whether the number of photons is insufficient or not. The reason for 
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testing is that the insufficient groups would influence the reliability of rebuilding the 

beam-like illumination areas which depend on the distribution of photons in a group. These 

groups will make the result of the radiance estimate generate noise, so we call them noise 

groups. This problem usually becomes more obvious when a scene consists of models with 

large numbers of polygonal meshes. For the photons going through these models, they will 

be clustered into many more small groups with few photons because of generating more 

different intersection histories. Besides showering more photons to reduce this kind of 

error, we also adopt a level of detail (LOD) technique to indirectly merge those groups 

with few photons. The concept is that we iteratively merge adjacent groups which have 

similar intersection histories into a larger one, after each time of surface simplification. By 

this method, we can raise the photon-count of a group and eliminate noise groups. (This 

will be further explained in Section 4.3) 

When terminating the photon-count testing for all groups, we separately create an 

independent photon map to store each photon group, instead of a standard photon map to 

store all photons. For each group, we also construct a unique kd-tree to organize and store 

its photon data and extend the Graham’s Scan [40] method to maintain a polygonal 

boundary so as to reconstruct a beam-like illumination area. (This will be described in 

Section 4.4) 

4.2.2. Rendering Pass 

In the rendering pass, we exploit a new nearest-neighbor density estimation method. The 

sampling or searching area around a query point is no longer restricted or determined by 

the region of a predefined fixed-shape such as a disc or sphere. Instead, the sampling area 

relies on the intersection testing between the query point and photon groups to verify 

which group-areas can be queried. Only if the point intersects with the polygonal boundary 

of any one group, can we access its photon kd-tree to locate the nearest-neighbor photons. 

Until the N nearest-neighbor photons have been found, we continue performing the 

intersection testing with the other groups and doing the sampling operations. 

However, it needs taking a great amount of time for a query point to perform the 
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ray-boundary intersection testing with all groups. Therefore, we have built a double-layer 

kd-tree, which is composed of the group nodes at the first layer and the photon nodes at the 

second layer. A group node is represented by the center point of a bounding sphere which 

can include all the photons of a group. This double-layer kd-tree can first filter and 

eliminate most of unrelated groups prior to the ray-boundary intersection testing. (This will 

be detailed in Section 4.5) 

In the final radiance estimate, we also use Silverman kernel function [14] to filter all of 

the photons sampled by the query point. 

4.3. Merging Groups using Quadric Error Metrics 

In the nearest-neighbor estimation method, we often encounter the problem that only few 

photons are sampled around the query point. This can lead to a visible error viewed as 

noise in the synthesized image. The common solution for standard photon mapping is 

increasing the bandwidth to search for more neighboring photons, or to directly ignore this 

result. However, relatively extending bandwidth also increases the scale of bias [11]. This 

problem is also reflected in our method. While creating photon groups, a group with few 

photons will result in a noisy result on the radiance estimate. 

To achieve a trade-off between noise and bias, we introduce a LOD technique proposed 

by Garland and Heckbert [24]. They used an efficient quadric error metrics to evaluate the 

contraction cost of a vertex-pair. Each time they choose a candidate vertex-pair with the 

lowest cost to be contracted during the surface-simplification process. This ensures that 

there is a higher priority to eliminate the most unimportant meshes of a model so that we 

can keep the important features of the appearance. We make use of this advantage to 

indirectly determine the order of reorganizing noise groups which only include few 

photons, such as those with fewer than 3 photons. The basic merging concept is that we 

iteratively contract vertex-pairs to merge meshes and modify their identifiers (mesh index). 

Meanwhile, we utilize the modification information to update the photon’s intersection 

history. By this way, we further merge the photons which have an identical intersection 

history into a big group, so that we can effectively raise the photon-count of a group and 
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reduce the number of noise groups. The actual merging steps are as follows (see Figure 4.6 

below): 

a. First use QEM to determine a vertex-pair (Vi,Vj) with the lowest contraction cost. 

b. Choose a vertex Vj with the lowest error ∆Vj to be removed and merged into Vi. 

c. Locate the adjacent meshes (s1-s5 and s9) that connect with the removed vertex 

Vj. 

d. Reassign these meshes (s1-s5 and s9) to the same index s1. 

e. Detect which groups went through these merged meshes (s1-s5 and s9), and then 

change the relative mesh indexes of their intersection histories to be s1. 

f. Finally, determine which the intersection histories of groups have been modified, 

and then merge the groups that have an identical intersection history into a larger 

one. 

It is not necessary to reduce entire noise groups, because merging too many groups can 

greatly increase the bias. Thus, by a simple statistical and empirical method, we evaluate 

whether or not to terminate the merging action. In geometry the most basic polygonal 

shape is the triangle. We, therefore, can reasonably assume that a valid group which must 

include at least three photons is just sufficient to construct a beam-like illumination area. 

Otherwise, it would become a noise group. Based on the evaluation standard for a valid 

group, we can gather the statistics about the ratio of valid photons to total photons to 

determine when to stop the merging action. When a photon belongs to a valid group, we 

call it a valid photon. As a rule of thumb in our experiment, it has been quite sufficient to 

render a high-quality image when 90% of photons are merged into valid groups, as the 

results shown in Section 5.2. 
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Figure 4.6. Using QEM to control the process of merging groups: (a) select a candidate vertex-pair (Vi,Vj) 

with the lowest contraction cost (∆V ), (b) merge Vj into Vi, (c) locate the adjacent meshes s1-s5 and s9, (d) 

reassign these mesh indexes to s1, (e) update the intersection histories for green and blue photons, (f) merge 
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photons with total identical history into a big group. 

4.4. Polygonal Boundary 

In general, constructing a 2-dimentional convex hull which includes all of the photons in a 

group is a convenient solution to approximate the illumination area of a light-beam. 

However, a beam could split into several sub-beams with irregular shapes when crossing a 

common border shared by multiple adjacent surfaces. To solve this problem, we have 

extended Graham’s Scan algorithm [40]. Our extension uses 2-dimentional polygonal 

boundaries to create various shapes, including convex and concave forms. Figure 4.7 

illustrates the steps used to construct the concave boundary for a photon group. 

 

 

Figure 4.7. The processes of building a polygonal boundary: (a) find a pivot, C, which is closest to the core 

position, and sort the other photons by ϕ, (b) find the first vertex, V1, that is the farthest photon, (c)search 

for the next vertex, V2, within Δϕ, (d) create the edge, V1V2       , and start at verexV2 to find next vertex within 

Δϕ, (e) create concave edges, CV2      and CV3     , because of not finding any photons, (f) continue to find next 
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vertex until we have finished searching all of photons. 

Our extension includes several different steps from the Graham’s Scan method. At the 

beginning, we must make sure that all of the photons in a group sit on the same flat surface. 

Because a group can have been merged together with other groups into a new group during 

the merging process, all of the photons in the new group could be distributed over different 

surfaces. It is hard and unnecessary to create a 3-dimentional polygonal boundary. Instead, 

we prefer to construct a 2-dimentional polygonal boundary by first projecting all photons 

onto the same plane as shown in Figure 4.7(a). We select a photon, C, which is nearest to 

the physical core position of the group, to be the pivot (this can be an internal point or a 

point on the boundary). The other photons then are projected onto the local uv-plane of C. 

Also, we sort these photons according to the size of the polar angle, ϕ, which is the angle 

between a photon and the u-axis. 

Based on the assumption that the photons in a group correspond to ray coherence, we 

can expect that all of the N photons in a group are distributed uniformly. For a perfect 

photon distribution, any photon, except for photon C, should be able to find another photon 

within Δϕ, i.e., 2π/(𝑁 − 1), as shown in Figure 4.7(c). If there is no photon found 

within Δϕ, it will result in a concave edge (see Figure 4.7(e)). In addition, to compensate 

for a possible error since the position of photon C diverges too much from the physical 

core position, we adopt a flexible parameter, m, which is a real number that ranges 

between 1.0 and 1.5, and multiply it by Δϕ, i.e., 2πm/(𝑁 − 1) . The parameter ensures 

that we can generate a larger Δϕ and tend to create a convex rather than concave edge for 

the worst case. This case is often seen when photon C is on the boundary, Δϕ could be 

insufficient to accurately construct a boundary. 

4.5. Radiance Estimate 

4.5.1. Advanced Nearest-Neighbor Density Estimation 

In the previous photon pass, we have constructed a polygonal boundary for each photon 



 

48 

group to represent the beam-like illumination area. Afterwards, we utilize the boundary 

information in the radiance estimate stage to enhance the strategy of sampling photons 

from the photon maps. Our method is first to detect which the polygonal boundaries of 

grouped photon maps intersect with query point x such as illustrated in Figure 4.8. We then 

locate the N nearest-neighbor photons around the query point from the photon kd-trees of 

these groups to estimate radiance. 

 

Figure 4.8. Performing the point-boundary intersection testing at query point x. 

In implementation, the steps for performing point-boundary intersection testing are 

described as below: 

a. In turn project the query point onto the surface where each group is deposited. 

b. Compute the query point’s relative polar angle ϕ to the local coordinate axis u of 

photon C (see Figure 4.7(a)).  

c. Later find that the query point lies between which both vertices on the boundary 

by comparing the ϕ value such as illustrated in Figure 4.9 where we assume that 

query point X is between Vi and Vj.  

d. If there is an edge between Vi and Vj, we need to further detect whether the point 
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is inside the triangle consisting of Vi, Vj, and C by means of evaluating the dot 

product of vector Vx and N (a perpendicular vector to the edge (Vi, Vj)). (see 

Figure 4.9(a)) 

e. Otherwise, if there is no edge between Vi and Vj, the point must be not inside the 

boundary.(see Figure 4.9(b)) 

f. Until all of groups have been evaluated, we continue to perform the 

point-boundary intersection testing. 

 

 

Figure 4.9. The point-boundary intersection testing: (a) there is an edge between Vi and Vj, where query 

point X hits the boundary because the dot (Vx, N) is less than zero ( θ > 90°) , (b) there is no edge such that 

X is not within the boundary.   

Once we have found a group hit by the query point in the point-boundary intersection 

testing, we start to search for the N nearest-neighbor photons from its kd-tree. In addition, 

if there are at least two groups to be hit as shown in Figure 4.10, we in turn locate the 

nearest-neighbor photons from each group, until N closest or all photons (if the number of 

photons is smaller than the N) have been located. 
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Figure 4.10. Locate 10 closest photons (red color) to the query point from two different photon groups and 

estimate the reflected radiance Lr. 

In the radiance estimate stage, we adopt a smoother filter (k p ), Silverman kernel 

function [14], to weight the energy of incident photons around the query point: 

k p = 3  1 −  
dp

dmax
 

2

 

2

∆A−1 ≈ 3  1 −  
dp

dmax
 

2

 

2

πdmax
2  

(4.1) 

Where p means one of the N closest photons to the query point. dp represents the distance 

between p and the query point, and dmax is the maximum dp. ∆A is the searching area 

which is denoted by the maximum disk area πdmax
2. 

4.5.2. Double-Layer Kd-tree  

In our density estimation method, the query point must first waste much time to perform a 

large number of point-boundary intersection tests so as to access the photon groups. 

However, in most cases, the query point only intersects with a limited number of groups. 

We, therefore, propose a double-layer kd-tree structure to efficiently exclude most of the 
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groups that do not intersect with the query point certainly before performing the 

point-boundary intersection testing. (see Figure 4.11) For each photon group, we build a 

bounding sphere that can enclose all of the photons inside it. Afterwards, we use all of the 

center points of the bounding spheres to build a kd-tree, called the first-layer kd-tree. 

Meanwhile, under each tree node, we also maintain a second-layer kd-tree, which consists 

of the photons within a group. Since both kinds of kd-trees have a hierarchical relationship, 

we call them double-layer kd-tree. 

 

 

Figure 4.11. The double-layer kd-tree: (a) construct a first-layer kd-tree based on the center points of various 

groups, (b) Each node of the first-layer tree connects with a photon kd-tree from its group.  

Based on the double-layer kd-tree structure, the sampling strategy has changed. We 

first define the searchable radius of the query point in the first-layer kd-tree as the radius of 

the maximum bounding-sphere. We then start to locate the first-layer tree nodes whose 

distances to the query point are smaller than the searching radius. If there is any node 

within the radius, we further evaluate whether that node’s bounding sphere encloses the 

query point. Once the query point is inside this bounding sphere, it is necessary to perform 

an actual point-boundary intersection testing, as described in Section 4.5.1, to determine 

whether the query point can access this group’s second-layer photon kd-tree.  
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Although the worst case is to perform all of the above-mentioned intersection testing, 

most of the photon groups have been quickly excluded during both simple point-sphere 

intersection tests. In addition, in comparison to the standard photon mapping method which 

stores all photons in a singular and large kd-tree, we only need to maintain a small-sized 

photon kd-tree under each first-layer tree node. This is helpful to efficiently search for the 

nearest-neighbor photons such that we can compensate for the excessive time spent on the 

point-boundary intersection testing. 

4.6. Visualizing Global Illumination using Grouped Photon 

Maps 

In order to visualize global illumination, we divide the rendering equation, as written in 

Equation 3.7, into four terms like Jensen’s photon mapping (see Section 3.1.7~3.1.11): 

direct illumination, specualr or highly glossy reflection, caustic illumination, and soft 

indirect illumination. In this dissertation, we adopt different solutions to render direct and 

caustic illumination as mentioned in the following two paragraphs.  

Although Photon mapping is efficient to render direct illumination by using direct and 

shadow photons to evaluate the visibility to light sources, it needs extra resources to store 

direct and shadow photons. Also, a large number of photons are needed to render a 

high-quality result in a complex scene. We, therefore, simply spawn shadow rays to test 

the visibility using Monte Carlo importance sampling based on both light sources and 

BRDF [41]. 

In comparison with soft indirect illumination, caustic illumination has a high variance 

such that it needs a large number of photons to render caustics with sharp or hard edge. So 

we adopt grouped photon maps to directly visualize caustic illumination instead of the 

photon maps. As mentioned in Section 4.4, we first use polygonal boundary to detect 

which groups are struck by the query point. The photon kd-trees of those struck groups are 

then accessed to search for the N nearest-neighbor photons and estimate the final caustic 

contribution. 
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As for soft indirect illumination, it is to evaluate the small contribution from indirect 

lighting which is diffusely reflected or transmitted at least once. As a result, it is enough to 

estimating radiance by using standard photon maps as mentioned in Section 3.1.11.  
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5. Results and Discussion 

In this chapter, we have performed several experiments to test the caustics-based scenes 

and compare grouped photon mapping with photon mapping and path tracing. This chapter 

is divided into five sections: system and environment configuration, level of detail test, 

light leakage test, diamond caustics tests, and run-time statistics. 

5.1. System and Environment Configuration 

We implemented our algorithm on the PBRT rendering system [41] which offer some ray 

tracing-based techniques to render global illumination. The experiment was run on a PC 

with Intel Dual-Core CPU 2.66 GHz and main-memory of 4 GB.  

We separately synthesized two kinds of image resolutions, including 512 by 512 pixels 

shown in Section 5.2 and Section 5.3, and 685 by 490 pixels shown in Section 5.4. The 

basic background scene includes a box similar to a Cornell box, and a diffuse square-area 

light source. Each one of the floor, walls, and ceiling use the same diffuse material “matte” 

(a reflectivity of 50%) which is built in the PBRT system. In addition, we set the maximal 

trace depth for all eye rays to 10, while shooting 16 sampling rays through each pixel of 

the viewing plane to average the result. The number of nearest-neighbor photons sampled 

around the query point is at most 50 except for the light leakage scene using 500 photons. 

5.2. Level of Detail Test 

In order to test the capability of quadric error metrics managing the process of merging 

groups, we rendered two scenes with caustic effect, including a glass sphere consisting of 

32,512 meshes and a glass bunny with 69,451 meshes respectively. In both scenes, there 

were a total of about 100,000 photons stored in the grouped photon maps.  

From Figure 5.1 to Figure 5.3, they show a series of synthesized images at different 

stages of surface simplification. In Figure 5.1, we barely see any caustic effect on the floor, 

because 95% of groups are recognized as noise groups which contain fewer than three 
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predefined photons. These noise groups would be ignored in the rendering pass such that 

we cannot render any caustic effect. However, as the model is progressively simplified, 

more and more caustic effect obviously appears as shown in Figure 5.2 and Figure 5.3.  

 

 

Figure 5.1. The caustic effect is rendered before performing any surface simplification. 
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Figure 5.2. The caustic effect is rendered after reducing 15% of vertices. 
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Figure 5.3. The caustic effect is rendered after reducing 30% of vertices. 
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Figure 5.4. The caustic effect is rendered using standard photon mapping. 

According to the ratio of valid-photons to total photons as illustrated in Figure 5.5 and 

Figure 5.6, which is the statistics of another glass bunny scene, we can also observe the 

above-mentioned growing tendency. In Figure 5.5, as vertex-pairs are collapsed or 

contracted at a rate of 5 percent each time, the valid-photon rate becomes higher and higher. 
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Also, it quickly converged into a steady status after about 30% of vertex-pairs to be 

contracted. That is to say, 90% of photons have been already merged into valid groups, and 

only 10% of invalid photons remain. In terms of efficiency, the contribution from these 

10% of photons to the radiance is so small that we can ignore it and discontinue the surface 

simplification. This result can be verified by means of the image comparison between 

Figure 5.3 and Figure 5.4. We can clearly recognize that both images have almost the same 

quality of caustics, and even our method (Figure 5.3) generates clearer and sharper caustic 

edge. Therefore, this experiment proves that we can successfully achieve good image 

quality and reach a better trade-off between noise and bias, while moderately merging 

groups by the quadric error metrics technique. 

 

 

Figure 5.5. Valid-photon (%) vs. Reduced-Vertex (%) for the glass sphere scene. The curved line converges 

quickly after contracting about 30% of vertices. 
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Figure 5.6. Valid-photon (%) vs. Reduced-Vertex (%) for the glass bunny scene. The curved line 

progressively grows and converges after contracting about 50% of vertices. 

5.3. Light Leakage Test 

In the third test scene as shown in Figure 5.7 and Figure 5.8, we demonstrate a box scene, 

which is divided into left and right rooms, to test the problem of light leakage. In this scene, 

the left wall of the left room consists of a mirror material surface. Also a square light 

source with a warm color is placed on the left room’s ceiling, while a point light source 

with a cool color is only added to light up the right room. In the photon pass, we shower 

about 100,000 photons from the warm light into the scene. In addition, in order to 

emphasize the light leakage effect, we make the query point possible to locate at most 500 

closest photons.  

Figure 5.7 uses the photon mapping method to render the scene. We find that the warm 

light leaks from the left room to the wall corners of the right room. This is because the 

query point, which approaches to the right side of the middle wall, has sampled the 

invisible photons from the left room. On the contrary, our grouped photon mapping 
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(Figure 5.8) completely eliminated light leakage due to the usage of polygonal boundaries 

to exclude invisible photons to the eyes. 

 

Figure 5.7. Light leaks from left room into right room while using photon mapping. 
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Figure 5.8. There is no light leakage while using grouped photon mapping. 

5.4. Diamond Caustics Test 

In this experiment, we test a series of diamond scenes with complex optical effect to 

compare our method with photon mapping and path tracing. Diamond, like many other 

gemstones, has a specular surface with a very high refractive index. This would intensely 

dispersed light into different monochromatic light while light goes through the diamond. In 

addition, for the diamond whose shape and appearance are perfectly cut and polished, this 

reason has light rays tend to be reflected and refracted multiple times inside the object. As 
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a result, a great deal of bright and hard edge of caustics with fire effect is projected onto 

the floor. 

At the beginning, we render a round brilliant cut of diamond scene while one million of 

caustic photons are stored in the grouped photon maps. The synthesized images from 

Figure 5.9 to Figure 5.11 are rendered by photon mapping, grouped photon mapping, and 

path tracing respectively.  

We clearly observe that photon mapping generates a great deal of blurry edge and 

dot-shaped caustics. In comparison with a realistic photograph as shown in Figure 1.2, this 

result loses the original caustic shape and sharp edge. The problem results from the fact 

that photon mapping cannot filter out the photons outside the edge of caustics. That is to 

say, although these false photons are outside the edge, they are also inside the searching 

area of the query point such that they are mis-sampled. In contrast, our method 

demonstrates a clearer and sharper edge of caustics as shown in Figure 5.10. The reason 

comes from adopting a nature and adaptive searching area consisting of polygonal 

boundaries to exclude those false photons. We also compare with traditional path tracing 

algorithm, such as the image shown in Figure 5.11. It also yields an undesirable result, 

even after raising the number of rays to over 20,000 per pixel at the cost of 12 hours and 35 

minutes totally. This is because the complex optics like light dispersion and multiple 

reflections or refractions makes path tracing hard to handle all of complex paths. 

We also render another three different cutting shapes of diamond scenes, including 

emerald-shaped, pear-shaped and multiple diamonds. These images are shown in Figure 

5.12, Figure 5.13, and Figure 5.14 respectively. 
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Figure 5.9. A round brilliant cut of diamond with complex caustics is rendered using photon mapping. 
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Figure 5.10. A round brilliant cut of diamond with complex caustics is rendered by grouped photon mapping. 
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Figure 5.11. A round brilliant cut of diamond with complex caustics is rendered using path tracing. 
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Figure 5.12. Emerald-cut diamond is rendered using grouped photon mapping. 
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Figure 5.13. Pear-cut diamond is rendered using grouped photon mapping. 

 

 

 

 

 

 



 

69 

 

 

 

 

Figure 5.14. Multiple diamonds are rendered using grouped photon mapping. 

5.5. Run-Time Statistics 

Table 5.1 lists the run-time statistics of three types of scenes, including a glass sphere 

(Figure 5.3 and Figure 5.4), a two-room box (Figure 5.7 and Figure 5.8), and a diamond 

(Figure 5.9 and Figure 5.10). In the first case, both photon mapping and grouped photon 

mapping provide acceptable image results, though the latter takes more time for clustering, 

merging, and point-boundary intersection testing. In the second case, light leakage is 

eliminated successfully by grouped photon mapping. Moreover, the rendering time is 

significantly lesser than that of photon mapping because the bounding sphere excluded 
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most of the groups and photons beforehand. In the last case, the accuracy and quality of the 

diamond image are obviously improved by grouped photon mapping at only a small 

additional time cost. 

Table 5.1. Run-time statistics. In the GPM method, the merging time costs of two-room-box and diamond 

scenes are both zero because their initial percentages of valid-photons are already higher than the default 

threshold of 90% 

Scene Method Cluster Time 

(sec) 

Merge Time 

(sec) 

Photon Pass Time 

(sec) 

Render Time 

(sec) 

Glass Sphere PM - - 18 454 

GPM 138.07 302.77 460.6 919.2 

Two-box 

Room 

PM - - 2 272.1 

GPM 0.02 - 2.02 126.6 

Diamond PM - - 875.4 547.7 

GPM 0.4 - 880.6 592.4 
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6. Conclusion and Future Work 

6.1. Conclusion 

In this dissertation, we have proposed a novel global illumination approach that integrates 

the photon mapping method with the light-beam concept to improve the nearest-neighbor 

density estimation method.  

Initially we cluster all of the photons into different groups based on the 

intersection-history coherence so as to rebuild the beam-like illumination area from each 

photon group. Also, we utilize quadric error metrics algorithm to progressively manage 

the process of merging noise groups and try to obtain a trade-off between noise and bias.  

In the rendering pass, the above-mentioned illumination area serves as a filter to restrict 

the searchable area of a query point for locating the N nearest-neighbor photons. 

Furthermore, we combine this bounding area information with a double-layer kd-tree 

structure to efficiently reduce the time for performing the point-boundary intersection 

testing and searching for the closest photons to the query point. 

The experiment results show that our algorithm successfully renders higher quality 

results than the standard photon mapping method. Under quadric error metrics, some 

visible noise is appropriately eliminated and the sharp or hard edge of illumination features 

such as caustics is accurately generated to reduce proximity bias.  

By the way of maintaining the polygonal boundaries for different beam-like groups, the 

searchable area around the query point can be effectively used to exclude the invisible 

photons to the eyes. This can achieve the purpose of eliminating light leakage.  

Finally, our advanced nearest-neighbor density estimation method also successfully 

renders a diamond scene with complex optical effects. The hard edge of caustics can be not 

only displayed clearly, but the original caustic shape can be also maintained smoothly. 

Both effects cannot be accurately rendered using the photon mapping method.  



 

72 

6.2. Future Work 

Although our algorithm effectively enhances the image quality, several problems remain to 

be solved. 

Most of the time used to build the grouped photon maps is wasted on the processes of 

clustering photons and merging groups. More research effort is necessary to find a better 

way or data structure to record the intersection history so that we can quickly organize the 

photons. 

In our algorithm, we adopt a continuous level of detail technique to manage the process 

of merging groups. However, when the scene needs a large amount of surface 

simplification, this will bring a heavy load which needs wasting time on surface 

simplification and performing the time-consuming merging process multiple times. In the 

future, we can first prepare different level-of-detail versions in the preprocess stage and 

find a relationship between the number of photons and object models to efficiently lower 

the frequency of the merging process.  

When the number of showered photons is insufficient, grouped photon mapping tends 

to create a visible defect. As shown in the top of Figure 6.1, a dark area is incorrectly 

rendered around the corner, when there are only 10,000 photons used. This problem occurs 

because grouped photon mapping fails to construct enough polygonal boundaries to lean 

up against the edge and corners. Relatively, raising the number of photons to 20,000 can 

effectively alleviate this problem. For future work, we are considering to adaptively adjust 

the number of photons by introducing a preprocessing stage which calculates the photon 

density at the edge of a scene. 

Currently, grouped photon mapping is only applied to the scenes that mainly consist of 

polygonal models. In the future, we hope to extend our method to other types of models by 

exploiting a more general-purpose architecture. 
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Figure 6.1. A visible dark edge appears around the corner while grouped photon mapping only showers very 

small number of photons (0.01 million photons) into the scene. 
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